do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations
نویسندگان
چکیده
The do_x3dna package has been developed to analyze the structural fluctuations of DNA or RNA during molecular dynamics simulations. It extends the capability of the 3DNA package to GROMACS MD trajectories and includes new methods to calculate the global-helical axis of DNA and bending fluctuations during simulations. The package also includes a Python module dnaMD to perform and visualize statistical analyses of complex data obtained from the trajectories.
منابع مشابه
Structural bioinformatics do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations
Summary: The do_x3dna package has been developed to analyze the structural fluctuations of DNA or RNA during molecular dynamics simulations. It extends the capability of the 3DNA package to GROMACS MD trajectories and includes new methods to calculate the global-helical axis of DNA and bending fluctuations during simulations. The package also includes a Python module dnaMD to perform and visual...
متن کاملInvestigation of isomorph-invariance in liquid methane by molecular dynamics simulation
In this paper, isomorph invariance of liquid methane is investigated by means of constant-NVT molecular dynamics simulations. According to the data extracted from simulations, equilibrium fluctuations show strong correlation between potential energy U and virial W. We also generated isomorph state points and investigated invariance of certain thermodynamic, structural, and dynamical properties....
متن کاملExplaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis
Double stranded helical DNA and RNA are flexible molecules that can undergo global conformational fluctuations. Their bending, twisting and stretching deformabilities are of similar magnitude. However, recent single-molecule experiments revealed a striking qualitative difference indicating an opposite sign for the twist-stretch couplings of dsDNA and dsRNA [Lipfert et al. 2014. Proc. Natl. Acad...
متن کاملSubstrate Recognition and Specificity of Double-Stranded RNA Binding Proteins
Recognition of double-stranded (ds) RNA is an important part of many cellular pathways, including RNA silencing, viral recognition, RNA editing, processing, and transport. dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs). We use atomistic molecular dynamics simulations to examine the binding interface of the transactivation response RNA binding protein (TRBP) dsRBDs to dsRN...
متن کاملUnderstanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
Multiple biological processes involve the stretching of nucleic acids (NAs). Stretching forces induce local changes in the molecule structure, inhibiting or promoting the binding of proteins, which ultimately affects their functionality. Understanding how a force induces changes in the structure of NAs at the atomic level is a challenge. Here, we use all-atom, microsecond-long molecular dynamic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 15 شماره
صفحات -
تاریخ انتشار 2015